Shp2sdo

  1. Shp2sdo.exe Download
  2. Shp2sdo Example

Shp2sdo is a command line utility that can be downloaded from Oracle and it converts shapefiles into sqlloader format so they can be easily loaded into the database. The download includes versions that can be used on Windows, Linux and Unix. May 31, 2013  hi, I am using shp2sdo to load shape files in 11g. Shp2sdo utility creates control file in which it add a key word TRUNCATE. Is there any parameter in shp2sdo utility to make this as APPEND.

Active9 months ago

I want a batch file to ftp to a server, read out a text file, and disconnect. The server requires a user and password. I tried

but it never logged on. How can I get this to work?

Oswald
27.1k2 gold badges34 silver badges64 bronze badges
user1935683user1935683

9 Answers

The answer by 0x90h helped a lot..

I saved this file as u.ftp:

Hp smart update manager download dl380 g3. I then ran this command:

And it worked!!!

Thanks a lot man :)

Community
OutlierOutlier

Using the Windows FTP client you would want to use the -s:filename option to specify a script for the FTP client to run. The documentation specifically points out that you should not try to pipe input into the FTP client with a < character.

Execution of the script will start immediately, so it does work for username/password.

However, the security of this setup is questionable since you now have a username and password for the FTP server visible to anyone who decides to look at your batch file.

Either way, you can generate the script file on the fly from the batch file and then pass it to the FTP client like so:

Replace servername, username, and password with your details and the batch file will generate the script as temp.txt launch ftp with the script and then delete the script.

If you are always getting the same file you can replace the %1 with the file name. If not you just launch the batchfile and provide the name of the file to get as an argument.

Simon East
36.7k11 gold badges110 silver badges103 bronze badges
0x90h0x90h

This is an old post however, one alternative is to use the command options:

the -n will suppress the initial login and then the file contents would be: (replace the 127.0.0.1 with your FTP site url)

This avoids the user/password on separate lines

Mark SchultheissMark Schultheiss
25.6k8 gold badges57 silver badges85 bronze badges

You need to write the ftp commands in a text file and give it as a parameter for the ftp command like this:

More info here: http://www.nsftools.com/tips/MSFTP.htm

I am not sure though if it would work with username and password prompt.

Simon East
36.7k11 gold badges110 silver badges103 bronze badges
LasseLasse

Each line of a batch file will get executed; but only after the previous line has completed. In your case, as soon as it hits the ftp line the ftp program will start and take over user input. When it is closed then the remaining lines will execute. Meaning the username/password are never sent to the FTP program and instead will be fed to the command prompt itself once the ftp program is closed.

Instead you need to pass everything you need on the ftp command line. Something like:

NotMeNotMe
77.9k25 gold badges156 silver badges234 bronze badges

Use

as decribed in Windows XP Professional Product Documentation.

The file name that you have to specify in place of FileName must contain FTP commands that you want to send to the server. Among theses commands are

  • open Computer [Port] to connect to an FTP server,
  • user UserName [Password] [Account] to authenticate with the FTP server,
  • get RemoteFile [LocalFile] to retrieve a file,
  • quit to end the FTP session and terminate the ftp program.

More commands can be found under Ftp subcommands.

OswaldOswald
27.1k2 gold badges34 silver badges64 bronze badges

You can use PowerShell as well; this is what I did. As I needed to download a file based on a pattern I dynamically created a command file and then let ftp do the rest.

I used basic PowerShell commands. I did not need to download any additional components. I first checked if the requisite number of files existed. If they I invoked the FTP the second time with an Mget.I run this from a Windows Server 2008 connecting to a Windows XP remote server.

Peter Mortensen
14.4k19 gold badges88 silver badges117 bronze badges
kevkev

Here's what I use. In my case, certain ftp servers (pure-ftpd for one) will always prompt for the username even with the -i parameter, and catch the 'user username' command as the interactive password. What I do it enter a few NOOP (no operation) commands until the ftp server times out, and then login:

Justin GoldbergJustin Goldberg

I have written a script as *.sh file

Works fine for me

GhayelGhayel
1,0001 gold badge8 silver badges16 bronze badges

protected by CommunityNov 26 '18 at 12:52

Thank you for your interest in this question. Because it has attracted low-quality or spam answers that had to be removed, posting an answer now requires 10 reputation on this site (the association bonus does not count).
Would you like to answer one of these unanswered questions instead?

Not the answer you're looking for? Browse other questions tagged windowsbatch-fileftp or ask your own question.

PTPN11
Available structures
PDBOrtholog search:
List of PDB id codes

2SHP, 3B7O, 3MOW, 3O5X, 3TKZ, 3TL0, 4DGP, 4DGX, 4GWF, 4H1O, 4JE4, 4JEG, 3ZM0, 3ZM1, 3ZM2, 3ZM3, 4H34, 4JMG, 4NWF, 4NWG, 4OHD, 4OHE, 4OHH, 4OHI, 4OHL, 4PVG, 4RDD, 4QSY, 5DF6, 5IBS, 5EHP, 5EHR, 5I6V, 5IBM

Identifiers
AliasesPTPN11, BPTP3, CFC, JMML, METCDS, NS1, PTP-1D, PTP2C, SH-PTP2, SH-PTP3, SHP2, protein tyrosine phosphatase, non-receptor type 11, protein tyrosine phosphatase non-receptor type 11
External IDs
Gene location (Human)
Chr.Chromosome 12 (human)[1]
Band12q24.13Start112,418,351 bp[1]
End112,509,913 bp[1]
Gene location (Mouse)
Chr.Chromosome 5 (mouse)[2]
Band5 5 FStart121,130,533 bp[2]
End121,191,397 bp[2]
RNA expression pattern
More reference expression data
Gene ontology
Molecular functionphospholipase binding
phosphoprotein phosphatase activity
insulin receptor binding
phosphatase activity
receptor tyrosine kinase binding
peptide hormone receptor binding
protein binding
non-membrane spanning protein tyrosine phosphatase activity
hydrolase activity
SH3/SH2 adaptor activity
phosphatidylinositol-4,5-bisphosphate 3-kinase activity
1-phosphatidylinositol-3-kinase activity
cell adhesion molecule binding
protein tyrosine phosphatase activity
phosphotyrosine residue binding
protein domain specific binding
D1 dopamine receptor binding
insulin receptor substrate binding
protein tyrosine kinase binding
protein kinase binding
Cellular componentcytoplasm
cytosol
mitochondrion
cell nucleus
nucleoplasm
macromolecular complex
Biological processdephosphorylation
megakaryocyte development
positive regulation of signal transduction
negative regulation of insulin secretion
regulation of cell adhesion mediated by integrin
atrioventricular canal development
intestinal epithelial cell migration
organ growth
epidermal growth factor receptor signaling pathway
negative regulation of growth hormone secretion
axonogenesis
glucose homeostasis
regulation of protein export from nucleus
multicellular organism growth
regulation of multicellular organism growth
lipid metabolism
ephrin receptor signaling pathway
abortive mitotic cell cycle
DNA damage checkpoint
protein dephosphorylation
T cell costimulation
platelet formation
microvillus organization
positive regulation of mitotic cell cycle
positive regulation of glucose import in response to insulin stimulus
genitalia development
platelet activation
fibroblast growth factor receptor signaling pathway
heart development
brain development
regulation of type I interferon-mediated signaling pathway
activation of MAPK activity
hormone-mediated signaling pathway
integrin-mediated signaling pathway
Bergmann glial cell differentiation
homeostasis of number of cells within a tissue
inner ear development
platelet-derived growth factor receptor signaling pathway
negative regulation of cortisol secretion
peptidyl-tyrosine dephosphorylation
ERBB signaling pathway
negative regulation of hormone secretion
triglyceride metabolic process
hormone metabolic process
positive regulation of hormone secretion
negative regulation of cell adhesion mediated by integrin
regulation of protein complex assembly
face morphogenesis
cerebellar cortex formation
leukocyte migration
multicellular organismal reproductive process
phosphatidylinositol phosphorylation
neurotrophin TRK receptor signaling pathway
phosphatidylinositol-3-phosphate biosynthetic process
axon guidance
positive regulation of ERK1 and ERK2 cascade
cellular response to epidermal growth factor stimulus
positive regulation of protein kinase B signaling
cytokine-mediated signaling pathway
interleukin-6-mediated signaling pathway
cellular response to cytokine stimulus
cellular response to mechanical stimulus
positive regulation of interferon-beta production
positive regulation of interleukin-6 production
positive regulation of tumor necrosis factor production
positive regulation of glucose import
positive regulation of insulin receptor signaling pathway
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002834
NM_080601
NM_001330437

NM_001109992
NM_011202

RefSeq (protein)

NP_001317366
NP_002825
NP_542168

NP_001103462
NP_035332

Location (UCSC)Chr 12: 112.42 – 112.51 MbChr 5: 121.13 – 121.19 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in humans is encoded by the PTPN11gene. PTPN11 is a protein tyrosine phosphatase (PTP) Shp2.[5][6]

PTPN11 is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP contains two tandem Src homology-2 domains, which function as phospho-tyrosine binding domains and mediate the interaction of this PTP with its substrates. This PTP is widely expressed in most tissues and plays a regulatory role in various cell signaling events that are important for a diversity of cell functions, such as mitogenic activation, metabolic control, transcription regulation, and cell migration. Mutations in this gene are a cause of Noonan syndrome as well as acute myeloid leukemia.[7]

  • 2Genetic diseases associated with PTPN11
  • 4Interactions

Structure and function[edit]

This phosphatase, along with its paralogue, Shp1, possesses a domain structure that consists of two tandem SH2 domains in its N-terminus followed by a protein tyrosine phosphatase (PTP) domain. In the inactive state, the N-terminal SH2 domain binds the PTP domain and blocks access of potential substrates to the active site. Thus, Shp2 is auto-inhibited.

Upon binding to target phospho-tyrosyl residues, the N-terminal SH2 domain is released from the PTP domain, catalytically activating the enzyme by relieving this auto-inhibition.

Genetic diseases associated with PTPN11[edit]

Missense mutations in the PTPN11 locus are associated with both Noonan syndrome and Leopard syndrome.

It has also been associated with Metachondromatosis.[8]

Noonan syndrome[edit]

In the case of Noonan syndrome, mutations are broadly distributed throughout the coding region of the gene but all appear to result in hyper-activated, or unregulated mutant forms of the protein. Most of these mutations disrupt the binding interface between the N-SH2 domain and catalytic core necessary for the enzyme to maintain its auto-inhibited conformation.[9]

Leopard syndrome[edit]

The mutations that cause Leopard syndrome are restricted regions affecting the catalytic core of the enzyme producing catalytically impaired Shp2 variants.[10] It is currently unclear how mutations that give rise to mutant variants of Shp2 with biochemically opposite characteristics result in similar human genetic syndromes.

Cancer associated with PTPN11[edit]

Patients with a subset of Noonan syndrome PTPN11 mutations also have a higher prevalence of juvenile myelomonocytic leukemias (JMML). Activating Shp2 mutations have also been detected in neuroblastoma, melanoma, acute myeloid leukemia, breast cancer, lung cancer, colorectal cancer.[11] Recently, a relatively high prevalence of PTPN11 mutations (24%) were detected by next-generation sequencing in a cohort of NPM1-mutated acute myeloid leukemia patients,[12] although the prognostic significance of such associations has not been clarified. These data suggests that Shp2 may be a proto-oncogene. However, it has been reported that PTPN11/Shp2 can act as either tumor promoter or suppressor.[13] In aged mouse model, hepatocyte-specific deletion of PTPN11/Shp2 promotes inflammatory signaling through the STAT3 pathway and hepatic inflammation/necrosis, resulting in regenerative hyperplasia and spontaneous development of tumors. Decreased PTPN11/Shp2 expression was detected in a subfraction of human hepatocellular carcinoma (HCC) specimens.[13] The bacterium Helicobacter pylori has been associated with gastric cancer, and this is thought to be mediated in part by the interaction of its virulence factor CagA with SHP2.[14]

Interactions[edit]

PTPN11 has been shown to interact with

  • CagA,[14]
  • Cbl gene,[15]
  • CD117,[16][17]
  • CD31,[18][19][20][21]
  • CEACAM1,[22]
  • Epidermal growth factor receptor,[23][24]
  • Erk[25][26]
  • FRS2,[27][28][29]
  • GAB1,[30][31]
  • GAB2,[32][33][34][35]
  • GAB3,[36]
  • Glycoprotein 130,[37][38][39]
  • Grb2,[29][40][41][42][43][44][45][46][47]
  • Growth hormone receptor,[48][49]
  • HoxA10,[50]
  • Insulin receptor,[51][52]
  • Insulin-like growth factor 1 receptor,[53][54]
  • IRS1,[55][56]
  • Janus kinase 1,[37][40]
  • Janus kinase 2,[40][57][58]
  • LAIR1,[59][60]
  • LRP1,[61]
  • PDGFRB,[62][63]
  • PI3K → Akt[25]
  • PLCG2,[32]
  • PTK2B,[64]
  • Ras[25][26]
  • SLAMF1,[65][66]
  • SOCS3,[37]
  • SOS1,[29][67]
  • STAT3,[13]
  • STAT5A,[68][69] and
  • STAT5B.[68]

H Pylori CagA virulence factor[edit]

CagA is a protein and virulence factor inserted by Helicobacter pylori into gastric epithelia. Once activated by SRC phosphorylation, CagA binds to SHP2, allosterically activating it. This leads to morphological changes, abnormal mitogenic signals and sustained activity can result in apoptosis of the host cell. Epidemiological studies have shown roles of cagA- positive H. pylori in the development of atrophic gastritis, peptic ulcer disease and gastric carcinoma.[70]

References[edit]

Shp2sdo.exe Download

  1. ^ abcGRCh38: Ensembl release 89: ENSG00000179295 - Ensembl, May 2017
  2. ^ abcGRCm38: Ensembl release 89: ENSMUSG00000043733 - Ensembl, May 2017
  3. ^'Human PubMed Reference:'. National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^'Mouse PubMed Reference:'. National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^Jamieson CR, van der Burgt I, Brady AF, van Reen M, Elsawi MM, Hol F, Jeffery S, Patton MA, Mariman E (December 1994). 'Mapping a gene for Noonan syndrome to the long arm of chromosome 12'. Nat. Genet. 8 (4): 357–60. doi:10.1038/ng1294-357. PMID7894486.
  6. ^Freeman RM, Plutzky J, Neel BG (December 1992). 'Identification of a human Src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew'. Proc. Natl. Acad. Sci. U.S.A. 89 (23): 11239–43. doi:10.1073/pnas.89.23.11239. PMC50525. PMID1280823.
  7. ^'Entrez Gene: PTPN11 protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1)'.
  8. ^Sobreira NL, Cirulli ET, Avramopoulos D, Wohler E, Oswald GL, Stevens EL, Ge D, Shianna KV, Smith JP, Maia JM, Gumbs CE, Pevsner J, Thomas G, Valle D, Hoover-Fong JE, Goldstein DB (June 2010). 'Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene'. PLoS Genet. 6 (6): e1000991. doi:10.1371/journal.pgen.1000991. PMC2887469. PMID20577567.
  9. ^Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS (January 2007). 'Germline gain-of-function mutations in SOS1 cause Noonan syndrome'. Nat. Genet. 39 (1): 70–4. doi:10.1038/ng1926. PMID17143285.
  10. ^Kontaridis MI, Swanson KD, David FS, Barford D, Neel BG (March 2006). 'PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects'. J. Biol. Chem. 281 (10): 6785–92. doi:10.1074/jbc.M513068200. PMID16377799.
  11. ^Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, Maris JM, Richardson A, Bardelli A, Sugarbaker DJ, Richards WG, Du J, Girard L, Minna JD, Loh ML, Fisher DE, Velculescu VE, Vogelstein B, Meyerson M, Sellers WR, Neel BG (December 2004). 'Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia'. Cancer Res. 64 (24): 8816–20. doi:10.1158/0008-5472.CAN-04-1923. PMID15604238.
  12. ^Patel SS, Kuo FC, Gibson CJ, Steensma DP, Soiffer RJ, Alyea EP, Chen YA, Fathi AT, Graubert TA, Brunner AM, Wadleigh M, Stone RM, DeAngelo DJ, Nardi V, Hasserjian RP, Weinberg OK (May 2018). 'High NPM1 mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML'. Blood. 131 (25): 2816–2825. doi:10.1182/blood-2018-01-828467. PMC6265642. PMID29724895.
  13. ^ abcBard-Chapeau EA, Li S, Ding J, Zhang SS, Zhu HH, Princen F, Fang DD, Han T, Bailly-Maitre B, Poli V, Varki NM, Wang H, Feng GS (May 2011). 'Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis'. Cancer Cell. 19 (5): 629–39. doi:10.1016/j.ccr.2011.03.023. PMC3098128. PMID21575863.
  14. ^ abHatakeyama M, Higashi H (2005). 'Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis'. Cancer Science. 96 (12): 835–843. doi:10.1111/j.1349-7006.2005.00130.x. PMID16367902.
  15. ^Tanaka Y, Tanaka N, Saeki Y, Tanaka K, Murakami M, Hirano T, Ishii N, Sugamura K (August 2008). 'c-Cbl-dependent monoubiquitination and lysosomal degradation of gp130'. Mol. Cell. Biol. 28 (15): 4805–18. doi:10.1128/MCB.01784-07. PMC2493370. PMID18519587.
  16. ^Tauchi T, Feng GS, Marshall MS, Shen R, Mantel C, Pawson T, Broxmeyer HE (October 1994). 'The ubiquitously expressed Syp phosphatase interacts with c-kit and Grb2 in hematopoietic cells'. J. Biol. Chem. 269 (40): 25206–11. PMID7523381.
  17. ^Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA (April 1998). 'SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain'. Mol. Cell. Biol. 18 (4): 2089–99. doi:10.1128/MCB.18.4.2089. PMC121439. PMID9528781.
  18. ^Ilan N, Cheung L, Pinter E, Madri JA (July 2000). 'Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation'. J. Biol. Chem. 275 (28): 21435–43. doi:10.1074/jbc.M001857200. PMID10801826.
  19. ^Pumphrey NJ, Taylor V, Freeman S, Douglas MR, Bradfield PF, Young SP, Lord JM, Wakelam MJ, Bird IN, Salmon M, Buckley CD (April 1999). 'Differential association of cytoplasmic signalling molecules SHP-1, SHP-2, SHIP and phospholipase C-gamma1 with PECAM-1/CD31'. FEBS Lett. 450 (1–2): 77–83. doi:10.1016/S0014-5793(99)00446-9. PMID10350061.
  20. ^Hua CT, Gamble JR, Vadas MA, Jackson DE (October 1998). 'Recruitment and activation of SHP-1 protein-tyrosine phosphatase by human platelet endothelial cell adhesion molecule-1 (PECAM-1). Identification of immunoreceptor tyrosine-based inhibitory motif-like binding motifs and substrates'. J. Biol. Chem. 273 (43): 28332–40. doi:10.1074/jbc.273.43.28332. PMID9774457.
  21. ^Jackson DE, Ward CM, Wang R, Newman PJ (March 1997). 'The protein-tyrosine phosphatase SHP-2 binds platelet/endothelial cell adhesion molecule-1 (PECAM-1) and forms a distinct signaling complex during platelet aggregation. Evidence for a mechanistic link between PECAM-1- and integrin-mediated cellular signaling'. J. Biol. Chem. 272 (11): 6986–93. doi:10.1074/jbc.272.11.6986. PMID9054388.
  22. ^Huber M, Izzi L, Grondin P, Houde C, Kunath T, Veillette A, Beauchemin N (January 1999). 'The carboxyl-terminal region of biliary glycoprotein controls its tyrosine phosphorylation and association with protein-tyrosine phosphatases SHP-1 and SHP-2 in epithelial cells'. J. Biol. Chem. 274 (1): 335–44. doi:10.1074/jbc.274.1.335. PMID9867848.
  23. ^Schulze WX, Deng L, Mann M (2005). 'Phosphotyrosine interactome of the ErbB-receptor kinase family'. Mol. Syst. Biol. 1 (1): E1–E13. doi:10.1038/msb4100012. PMC1681463. PMID16729043.
  24. ^Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer FD (September 1995). 'Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C'. J. Biol. Chem. 270 (36): 21277–84. doi:10.1074/jbc.270.36.21277. PMID7673163.
  25. ^ abcL.A. Lai; C. Zhao; E.E. Zhang; G.S. Feng (2004). '14 The Shp-2 tyrosine phosphatase'. In Joaquín Ariño; Denis Alexander (eds.). Protein phosphatases. Springer. pp. 275–299. ISBN978-3-540-20560-9.
  26. ^ abNeel BG, Gu H, Pao L (June 2003). 'The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling'. Trends in Biochemical Sciences. 28 (6): 284–293. doi:10.1016/S0968-0004(03)00091-4. ISSN0968-0004. PMID12826400.
  27. ^Delahaye L, Rocchi S, Van Obberghen E (February 2000). 'Potential involvement of FRS2 in insulin signaling'. Endocrinology. 141 (2): 621–8. doi:10.1210/endo.141.2.7298. PMID10650943.
  28. ^Kurokawa K, Iwashita T, Murakami H, Hayashi H, Kawai K, Takahashi M (April 2001). 'Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction'. Oncogene. 20 (16): 1929–38. doi:10.1038/sj.onc.1204290. PMID11360177.
  29. ^ abcHadari YR, Kouhara H, Lax I, Schlessinger J (July 1998). 'Binding of Shp2 tyrosine phosphatase to FRS2 is essential for fibroblast growth factor-induced PC12 cell differentiation'. Mol. Cell. Biol. 18 (7): 3966–73. doi:10.1128/MCB.18.7.3966. PMC108981. PMID9632781.
  30. ^Saito Y, Hojo Y, Tanimoto T, Abe J, Berk BC (June 2002). 'Protein kinase C-alpha and protein kinase C-epsilon are required for Grb2-associated binder-1 tyrosine phosphorylation in response to platelet-derived growth factor'. J. Biol. Chem. 277 (26): 23216–22. doi:10.1074/jbc.M200605200. PMID11940581.
  31. ^Rocchi S, Tartare-Deckert S, Murdaca J, Holgado-Madruga M, Wong AJ, Van Obberghen E (July 1998). 'Determination of Gab1 (Grb2-associated binder-1) interaction with insulin receptor-signaling molecules'. Mol. Endocrinol. 12 (7): 914–23. doi:10.1210/mend.12.7.0141. PMID9658397.
  32. ^ abBoudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, Haye B, Billat C (October 2002). 'Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells'. Cell. Signal. 14 (10): 869–78. doi:10.1016/S0898-6568(02)00036-0. PMID12135708.
  33. ^Lynch DK, Daly RJ (January 2002). 'PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2'. EMBO J. 21 (1–2): 72–82. doi:10.1093/emboj/21.1.72. PMC125816. PMID11782427.
  34. ^Zhao C, Yu DH, Shen R, Feng GS (July 1999). 'Gab2, a new pleckstrin homology domain-containing adapter protein, acts to uncouple signaling from ERK kinase to Elk-1'. J. Biol. Chem. 274 (28): 19649–54. doi:10.1074/jbc.274.28.19649. PMID10391903.
  35. ^Crouin C, Arnaud M, Gesbert F, Camonis J, Bertoglio J (April 2001). 'A yeast two-hybrid study of human p97/Gab2 interactions with its SH2 domain-containing binding partners'. FEBS Lett. 495 (3): 148–53. doi:10.1016/S0014-5793(01)02373-0. PMID11334882.
  36. ^Wolf, I.; Jenkins, B. J.; Liu, Y.; Seiffert, M.; Custodio, J. M.; Young, P.; Rohrschneider, L. R. (2002). 'Gab3, a New DOS/Gab Family Member, Facilitates Macrophage Differentiation'. Molecular and Cellular Biology. 22 (1): 231–244. doi:10.1128/MCB.22.1.231-244.2002. ISSN0270-7306. and associates transiently with the SH2 domain-containing proteins p85 and SHP2
  37. ^ abcLehmann U, Schmitz J, Weissenbach M, Sobota RM, Hortner M, Friederichs K, Behrmann I, Tsiaris W, Sasaki A, Schneider-Mergener J, Yoshimura A, Neel BG, Heinrich PC, Schaper F (January 2003). 'SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130'. J. Biol. Chem. 278 (1): 661–71. doi:10.1074/jbc.M210552200. PMID12403768.
  38. ^Anhuf D, Weissenbach M, Schmitz J, Sobota R, Hermanns HM, Radtke S, Linnemann S, Behrmann I, Heinrich PC, Schaper F (September 2000). 'Signal transduction of IL-6, leukemia-inhibitory factor, and oncostatin M: structural receptor requirements for signal attenuation'. Journal of Immunology. 165 (5): 2535–43. doi:10.4049/jimmunol.165.5.2535. PMID10946280.
  39. ^Kim H, Baumann H (December 1997). 'Transmembrane domain of gp130 contributes to intracellular signal transduction in hepatic cells'. J. Biol. Chem. 272 (49): 30741–7. doi:10.1074/jbc.272.49.30741. PMID9388212.
  40. ^ abcYin T, Shen R, Feng GS, Yang YC (January 1997). 'Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases'. J. Biol. Chem. 272 (2): 1032–7. doi:10.1074/jbc.272.2.1032. PMID8995399.
  41. ^Ganju RK, Brubaker SA, Chernock RD, Avraham S, Groopman JE (June 2000). 'Beta-chemokine receptor CCR5 signals through SHP1, SHP2, and Syk'. J. Biol. Chem. 275 (23): 17263–8. doi:10.1074/jbc.M000689200. PMID10747947.
  42. ^Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG (July 1994). 'Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras'. Proc. Natl. Acad. Sci. U.S.A.91 (15): 7335–9. doi:10.1073/pnas.91.15.7335. PMC44394. PMID8041791.
  43. ^Ward AC, Monkhouse JL, Hamilton JA, Csar XF (November 1998). 'Direct binding of Shc, Grb2, SHP-2 and p40 to the murine granulocyte colony-stimulating factor receptor'. Biochim. Biophys. Acta. 1448 (1): 70–6. doi:10.1016/S0167-4889(98)00120-7. PMID9824671.
  44. ^Tang J, Feng GS, Li W (October 1997). 'Induced direct binding of the adapter protein Nck to the GTPase-activating protein-associated protein p62 by epidermal growth factor'. Oncogene. 15 (15): 1823–32. doi:10.1038/sj.onc.1201351. PMID9362449.
  45. ^Tang H, Zhao ZJ, Huang XY, Landon EJ, Inagami T (April 1999). 'Fyn kinase-directed activation of SH2 domain-containing protein-tyrosine phosphatase SHP-2 by Gi protein-coupled receptors in Madin-Darby canine kidney cells'. J. Biol. Chem. 274 (18): 12401–7. doi:10.1074/jbc.274.18.12401. PMID10212213.
  46. ^Zhang S, Mantel C, Broxmeyer HE (March 1999). 'Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells'. J. Leukoc. Biol. 65 (3): 372–80. doi:10.1002/jlb.65.3.372. PMID10080542.
  47. ^Wong L, Johnson GR (August 1996). 'Epidermal growth factor induces coupling of protein-tyrosine phosphatase 1D to GRB2 via the COOH-terminal SH3 domain of GRB2'. J. Biol. Chem. 271 (35): 20981–4. doi:10.1074/jbc.271.35.20981. PMID8702859.
  48. ^Stofega MR, Herrington J, Billestrup N, Carter-Su C (September 2000). 'Mutation of the SHP-2 binding site in growth hormone (GH) receptor prolongs GH-promoted tyrosyl phosphorylation of GH receptor, JAK2, and STAT5B'. Mol. Endocrinol. 14 (9): 1338–50. doi:10.1210/me.14.9.1338. PMID10976913.
  49. ^Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J (June 1998). 'Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins'. J. Biol. Chem. 273 (26): 15906–12. doi:10.1074/jbc.273.26.15906. PMID9632636.
  50. ^Wang H, Lindsey S, Konieczna I, Bei L, Horvath E, Huang W, Saberwal G, Eklund EA (January 2009). 'Constitutively active SHP2 cooperates with HoxA10 overexpression to induce acute myeloid leukemia'. J Biol Chem. 284 (4): 2549–67. doi:10.1074/jbc.M804704200. PMC2629090. PMID19022774.
  51. ^Maegawa H, Ugi S, Adachi M, Hinoda Y, Kikkawa R, Yachi A, Shigeta Y, Kashiwagi A (March 1994). 'Insulin receptor kinase phosphorylates protein tyrosine phosphatase containing Src homology 2 regions and modulates its PTPase activity in vitro'. Biochem. Biophys. Res. Commun. 199 (2): 780–5. doi:10.1006/bbrc.1994.1297. PMID8135823.
  52. ^Kharitonenkov A, Schnekenburger J, Chen Z, Knyazev P, Ali S, Zwick E, White M, Ullrich A (December 1995). 'Adapter function of protein-tyrosine phosphatase 1D in insulin receptor/insulin receptor substrate-1 interaction'. J. Biol. Chem. 270 (49): 29189–93. doi:10.1074/jbc.270.49.29189. PMID7493946.
  53. ^Mañes S, Mira E, Gómez-Mouton C, Zhao ZJ, Lacalle RA, Martínez-A C (April 1999). 'Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility'. Mol. Cell. Biol. 19 (4): 3125–35. doi:10.1128/mcb.19.4.3125. PMC84106. PMID10082579.
  54. ^Seely BL, Reichart DR, Staubs PA, Jhun BH, Hsu D, Maegawa H, Milarski KL, Saltiel AR, Olefsky JM (August 1995). 'Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein'. J. Biol. Chem. 270 (32): 19151–7. doi:10.1074/jbc.270.32.19151. PMID7642582.
  55. ^Kuhné MR, Pawson T, Lienhard GE, Feng GS (June 1993). 'The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp'. J. Biol. Chem. 268 (16): 11479–81. PMID8505282.
  56. ^Myers MG, Mendez R, Shi P, Pierce JH, Rhoads R, White MF (October 1998). 'The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling'. J. Biol. Chem. 273 (41): 26908–14. doi:10.1074/jbc.273.41.26908. PMID9756938.
  57. ^Tauchi T, Damen JE, Toyama K, Feng GS, Broxmeyer HE, Krystal G (June 1996). 'Tyrosine 425 within the activated erythropoietin receptor binds Syp, reduces the erythropoietin required for Syp tyrosine phosphorylation, and promotes mitogenesis'. Blood. 87 (11): 4495–501. PMID8639815.
  58. ^Maegawa H, Kashiwagi A, Fujita T, Ugi S, Hasegawa M, Obata T, Nishio Y, Kojima H, Hidaka H, Kikkawa R (November 1996). 'SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates'. Biochem. Biophys. Res. Commun. 228 (1): 122–7. doi:10.1006/bbrc.1996.1626. PMID8912646.
  59. ^Fournier N, Chalus L, Durand I, Garcia E, Pin JJ, Churakova T, Patel S, Zlot C, Gorman D, Zurawski S, Abrams J, Bates EE, Garrone P (August 2000). 'FDF03, a novel inhibitory receptor of the immunoglobulin superfamily, is expressed by human dendritic and myeloid cells'. Journal of Immunology. 165 (3): 1197–209. doi:10.4049/jimmunol.165.3.1197. PMID10903717.
  60. ^Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH (August 1997). 'LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes'. Immunity. 7 (2): 283–90. doi:10.1016/S1074-7613(00)80530-0. PMID9285412.
  61. ^Betts GN, van der Geer P, Komives EA (June 2008). 'Structural and functional consequences of tyrosine phosphorylation in the LRP1 cytoplasmic domain'. J. Biol. Chem. 283 (23): 15656–64. doi:10.1074/jbc.M709514200. PMC2414285. PMID18381291.
  62. ^Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Günther B, Müller T, Birchmeier C, Böhmer FD (January 2001). 'Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1'. J. Cell Biol. 152 (2): 325–34. doi:10.1083/jcb.152.2.325. PMC2199605. PMID11266449.
  63. ^Lechleider RJ, Sugimoto S, Bennett AM, Kashishian AS, Cooper JA, Shoelson SE, Walsh CT, Neel BG (October 1993). 'Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphotyrosine 1009, on the human platelet-derived growth factor receptor'. J. Biol. Chem. 268 (29): 21478–81. PMID7691811.
  64. ^Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE, Shima Y, Tai YT, Rosen S, Avraham S, Kharbanda S, Anderson KC (September 2000). 'SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells'. J. Biol. Chem. 275 (36): 27845–50. doi:10.1074/jbc.M003428200. PMID10880513.
  65. ^Howie D, Simarro M, Sayos J, Guirado M, Sancho J, Terhorst C (February 2000). 'Molecular dissection of the signaling and costimulatory functions of CD150 (SLAM): CD150/SAP binding and CD150-mediated costimulation'. Blood. 99 (3): 957–65. doi:10.1182/blood.V99.3.957. PMID11806999.
  66. ^Morra M, Lu J, Poy F, Martin M, Sayos J, Calpe S, Gullo C, Howie D, Rietdijk S, Thompson A, Coyle AJ, Denny C, Yaffe MB, Engel P, Eck MJ, Terhorst C (November 2001). 'Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells'. EMBO J. 20 (21): 5840–52. doi:10.1093/emboj/20.21.5840. PMC125701. PMID11689425.
  67. ^Chin H, Saito T, Arai A, Yamamoto K, Kamiyama R, Miyasaka N, Miura O (October 1997). 'Erythropoietin and IL-3 induce tyrosine phosphorylation of CrkL and its association with Shc, SHP-2, and Cbl in hematopoietic cells'. Biochem. Biophys. Res. Commun. 239 (2): 412–7. doi:10.1006/bbrc.1997.7480. PMID9344843.
  68. ^ abYu CL, Jin YJ, Burakoff SJ (January 2000). 'Cytosolic tyrosine dephosphorylation of STAT5. Potential role of SHP-2 in STAT5 regulation'. J. Biol. Chem. 275 (1): 599–604. doi:10.1074/jbc.275.1.599. PMID10617656.
  69. ^Chughtai N, Schimchowitsch S, Lebrun JJ, Ali S (August 2002). 'Prolactin induces SHP-2 association with Stat5, nuclear translocation, and binding to the beta-casein gene promoter in mammary cells'. J. Biol. Chem. 277 (34): 31107–14. doi:10.1074/jbc.M200156200. PMID12060651.
  70. ^Hatakeyama M (September 2004). 'Oncogenic mechanisms of the Helicobacter pylori CagA protein'. Nature Reviews Cancer. 4 (9): 688–94. doi:10.1038/nrc1433. PMID15343275.

Further reading[edit]

  • Marron MB, Hughes DP, McCarthy MJ, Beaumont ER, Brindle NP (2000). Tie-1 receptor tyrosine kinase endodomain interaction with SHP2: potential signalling mechanisms and roles in angiogenesis. Adv. Exp. Med. Biol. Advances in Experimental Medicine and Biology. 476. pp. 35–46. doi:10.1007/978-1-4615-4221-6_3. ISBN978-1-4613-6895-3. PMID10949653.
  • Carter-Su C, Rui L, Stofega MR (2000). 'SH2-B and SIRP: JAK2 binding proteins that modulate the actions of growth hormone'. Recent Prog. Horm. Res. 55: 293–311. PMID11036942.
  • Ion A, Tartaglia M, Song X, Kalidas K, van der Burgt I, Shaw AC, Ming JE, Zampino G, Zackai EH, Dean JC, Somer M, Parenti G, Crosby AH, Patton MA, Gelb BD, Jeffery S (2002). 'Absence of PTPN11 mutations in 28 cases of cardiofaciocutaneous (CFC) syndrome'. Hum. Genet. 111 (4–5): 421–7. doi:10.1007/s00439-002-0803-6. PMID12384786.
  • Hugues L, Cavé H, Philippe N, Pereira S, Fenaux P, Preudhomme C (2006). 'Mutations of PTPN11 are rare in adult myeloid malignancies'. Haematologica. 90 (6): 853–4. PMID15951301.
  • Tartaglia M, Gelb BD (2005). 'Germ-line and somatic PTPN11 mutations in human disease'. European Journal of Medical Genetics. 48 (2): 81–96. doi:10.1016/j.ejmg.2005.03.001. PMID16053901.
  • Ogata T, Yoshida R (2006). 'PTPN11 mutations and genotype-phenotype correlations in Noonan and LEOPARD syndromes'. Pediatric Endocrinology Reviews : PER. 2 (4): 669–74. PMID16208280.
  • Feng GS (2007). 'Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation'. Cell Res. 17 (1): 37–41. doi:10.1038/sj.cr.7310140. PMID17211446.
  • Edouard T, Montagner A, Dance M, Conte F, Yart A, Parfait B, Tauber M, Salles JP, Raynal P (2007). 'How do Shp2 mutations that oppositely influence its biochemical activity result in syndromes with overlapping symptoms?'. Cell. Mol. Life Sci. 64 (13): 1585–90. doi:10.1007/s00018-007-6509-0. PMID17453145.

External links[edit]

Shp2sdo Example

Retrieved from 'https://en.wikipedia.org/w/index.php?title=PTPN11&oldid=909240944'